Nuprl Lemma : metric-subspace_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[A:Type].  (metric-subspace(X;d;A) ∈ ℙ)
Proof
Definitions occuring in Statement : 
metric-subspace: metric-subspace(X;d;A)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
metric-subspace: metric-subspace(X;d;A)
, 
prop: ℙ
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
metric_wf, 
istype-universe, 
strong-subtype_wf, 
strong-subtype-iff-respects-equality, 
all_wf, 
meq_wf, 
equal-wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
productEquality, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
instantiate, 
universeEquality, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
functionEquality, 
because_Cache, 
applyEquality, 
lambdaFormation_alt, 
lambdaEquality_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[A:Type].    (metric-subspace(X;d;A)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_30-AM-06_30_25
Last ObjectModification:
2019_10_02-AM-10_05_24
Theory : reals
Home
Index