Nuprl Lemma : msep-not-meq
∀[X:Type]. ∀d:metric(X). ∀x,y:X.  (x # y 
⇒ (¬x ≡ y))
Proof
Definitions occuring in Statement : 
msep: x # y
, 
meq: x ≡ y
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
msep: x # y
, 
meq: x ≡ y
, 
mdist: mdist(d;x;y)
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
rless_transitivity1, 
int-to-real_wf, 
mdist_wf, 
rleq_weakening, 
rless_irreflexivity, 
meq_wf, 
msep_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
dependent_functionElimination, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
voidElimination, 
universeIsType, 
inhabitedIsType, 
sqequalRule, 
lambdaEquality_alt, 
functionIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}x,y:X.    (x  \#  y  {}\mRightarrow{}  (\mneg{}x  \mequiv{}  y))
Date html generated:
2019_10_29-AM-11_02_28
Last ObjectModification:
2019_10_02-AM-09_43_27
Theory : reals
Home
Index