Nuprl Lemma : msep-not-meq

[X:Type]. ∀d:metric(X). ∀x,y:X.  (x  x ≡ y))


Proof




Definitions occuring in Statement :  msep: y meq: x ≡ y metric: metric(X) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q not: ¬A false: False msep: y meq: x ≡ y mdist: mdist(d;x;y) guard: {T} uimplies: supposing a prop:
Lemmas referenced :  rless_transitivity1 int-to-real_wf mdist_wf rleq_weakening rless_irreflexivity meq_wf msep_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt thin sqequalHypSubstitution hypothesis extract_by_obid dependent_functionElimination isectElimination natural_numberEquality hypothesisEquality because_Cache independent_functionElimination independent_isectElimination voidElimination universeIsType inhabitedIsType sqequalRule lambdaEquality_alt functionIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}x,y:X.    (x  \#  y  {}\mRightarrow{}  (\mneg{}x  \mequiv{}  y))



Date html generated: 2019_10_29-AM-11_02_28
Last ObjectModification: 2019_10_02-AM-09_43_27

Theory : reals


Home Index