Nuprl Lemma : msep-symm
∀[X:Type]. ∀d:metric(X). ∀x,y:X.  uiff(x # y;y # x)
Proof
Definitions occuring in Statement : 
msep: x # y, 
metric: metric(X), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
msep: x # y, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
sq_stable__rless, 
int-to-real_wf, 
mdist_wf, 
rless_wf, 
metric_wf, 
istype-universe, 
rless_functionality, 
req_weakening, 
mdist-symm
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}x,y:X.    uiff(x  \#  y;y  \#  x)
 Date html generated: 
2019_10_29-AM-11_01_23
 Last ObjectModification: 
2019_10_02-AM-09_42_35
Theory : reals
Home
Index