Nuprl Lemma : not-msep

[X:Type]. ∀[d:metric(X)]. ∀[x,y:X].  x ≡ supposing ¬y


Proof




Definitions occuring in Statement :  msep: y meq: x ≡ y metric: metric(X) uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a msep: y meq: x ≡ y metric: metric(X) implies:  Q not: ¬A prop: false: False mdist: mdist(d;x;y)
Lemmas referenced :  not-rless int-to-real_wf mdist_wf mdist-nonneg req_witness msep_wf istype-void metric_wf istype-universe req_inversion rleq_antisymmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution extract_by_obid isectElimination thin natural_numberEquality hypothesis hypothesisEquality independent_isectElimination sqequalRule applyEquality setElimination rename independent_functionElimination functionIsType universeIsType isect_memberEquality_alt because_Cache isectIsTypeImplies inhabitedIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y:X].    x  \mequiv{}  y  supposing  \mneg{}x  \#  y



Date html generated: 2019_10_29-AM-11_02_06
Last ObjectModification: 2019_10_02-AM-09_43_10

Theory : reals


Home Index