Nuprl Lemma : not-msep
∀[X:Type]. ∀[d:metric(X)]. ∀[x,y:X].  x ≡ y supposing ¬x # y
Proof
Definitions occuring in Statement : 
msep: x # y, 
meq: x ≡ y, 
metric: metric(X), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
msep: x # y, 
meq: x ≡ y, 
metric: metric(X), 
implies: P ⇒ Q, 
not: ¬A, 
prop: ℙ, 
false: False, 
mdist: mdist(d;x;y)
Lemmas referenced : 
not-rless, 
int-to-real_wf, 
mdist_wf, 
mdist-nonneg, 
req_witness, 
msep_wf, 
istype-void, 
metric_wf, 
istype-universe, 
req_inversion, 
rleq_antisymmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
applyEquality, 
setElimination, 
rename, 
independent_functionElimination, 
functionIsType, 
universeIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,y:X].    x  \mequiv{}  y  supposing  \mneg{}x  \#  y
 Date html generated: 
2019_10_29-AM-11_02_06
 Last ObjectModification: 
2019_10_02-AM-09_43_10
Theory : reals
Home
Index