Nuprl Lemma : r-list-sum_wf
∀[L:ℝ List]. (r-list-sum(L) ∈ ℝ)
Proof
Definitions occuring in Statement : 
r-list-sum: r-list-sum(L)
, 
real: ℝ
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
r-list-sum: r-list-sum(L)
Lemmas referenced : 
radd_wf, 
real_wf, 
reduce_wf, 
int-to-real_wf, 
list_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
universeIsType, 
isect_memberFormation_alt, 
sqequalRule, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[L:\mBbbR{}  List].  (r-list-sum(L)  \mmember{}  \mBbbR{})
Date html generated:
2019_10_29-AM-10_20_08
Last ObjectModification:
2019_09_18-PM-05_02_27
Theory : reals
Home
Index