Nuprl Lemma : r-list-sum_wf

[L:ℝ List]. (r-list-sum(L) ∈ ℝ)


Proof




Definitions occuring in Statement :  r-list-sum: r-list-sum(L) real: list: List uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] r-list-sum: r-list-sum(L)
Lemmas referenced :  radd_wf real_wf reduce_wf int-to-real_wf list_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType universeIsType isect_memberFormation_alt sqequalRule natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[L:\mBbbR{}  List].  (r-list-sum(L)  \mmember{}  \mBbbR{})



Date html generated: 2019_10_29-AM-10_20_08
Last ObjectModification: 2019_09_18-PM-05_02_27

Theory : reals


Home Index