Nuprl Lemma : ratreal-int-rat-mul

[a:ℤ × ℕ+]. ∀[n:ℤ].  (ratreal(int-rat-mul(n;a)) ratreal(a))


Proof




Definitions occuring in Statement :  int-rat-mul: int-rat-mul(n;x) ratreal: ratreal(r) int-rmul: k1 a req: y nat_plus: + uall: [x:A]. B[x] product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B sq_stable: SqStable(P) implies:  Q all: x:A. B[x] squash: T
Lemmas referenced :  sq_stable__req ratreal_wf int-rat-mul_wf int-rmul_wf istype-int nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule independent_functionElimination lambdaFormation_alt because_Cache imageMemberEquality baseClosed imageElimination equalityIstype dependent_functionElimination productIsType universeIsType

Latex:
\mforall{}[a:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbZ{}].    (ratreal(int-rat-mul(n;a))  =  n  *  ratreal(a))



Date html generated: 2019_10_30-AM-09_24_19
Last ObjectModification: 2019_01_11-AM-10_13_03

Theory : reals


Home Index