Nuprl Lemma : int-rat-mul_wf

[a:ℤ × ℕ+]. ∀[n:ℤ].  (int-rat-mul(n;a) ∈ {r:ℤ × ℕ+ratreal(r) ratreal(a)} )


Proof




Definitions occuring in Statement :  int-rat-mul: int-rat-mul(n;x) ratreal: ratreal(r) int-rmul: k1 a req: y nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-rat-mul: int-rat-mul(n;x) has-value: (a)↓ uimplies: supposing a prop: nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  value-type-has-value int-value-type req_wf ratreal_wf int-rmul_wf istype-int nat_plus_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rmul_wf req_functionality ratreal-req req_transitivity int-rmul-req rmul_functionality req_weakening rmul_preserves_req rinv_wf2 itermSubtract_wf itermMultiply_wf req_inversion rmul-int rmul-rinv3 req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut productElimination thin sqequalRule callbyvalueReduce introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality independent_isectElimination hypothesis multiplyEquality hypothesisEquality dependent_set_memberEquality_alt independent_pairEquality universeIsType productIsType setElimination rename because_Cache inrFormation_alt dependent_functionElimination independent_functionElimination natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation

Latex:
\mforall{}[a:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbZ{}].    (int-rat-mul(n;a)  \mmember{}  \{r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  ratreal(r)  =  n  *  ratreal(a)\}  )



Date html generated: 2019_10_30-AM-09_23_47
Last ObjectModification: 2019_01_10-PM-01_57_05

Theory : reals


Home Index