Nuprl Lemma : ratreal-ratexp

[a:ℤ × ℕ+]. ∀[n:ℕ].  (ratreal(ratexp(a;n)) ratreal(a)^n)


Proof




Definitions occuring in Statement :  ratexp: ratexp(x;n) ratreal: ratreal(r) rnexp: x^k1 req: y nat_plus: + nat: uall: [x:A]. B[x] product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B sq_stable: SqStable(P) implies:  Q all: x:A. B[x] squash: T
Lemmas referenced :  sq_stable__req ratreal_wf ratexp_wf rnexp_wf istype-nat istype-int nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule independent_functionElimination lambdaFormation_alt because_Cache imageMemberEquality baseClosed imageElimination equalityIstype dependent_functionElimination productIsType universeIsType

Latex:
\mforall{}[a:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].    (ratreal(ratexp(a;n))  =  ratreal(a)\^{}n)



Date html generated: 2019_10_30-AM-09_30_41
Last ObjectModification: 2019_01_11-PM-05_16_13

Theory : reals


Home Index