Nuprl Lemma : ratexp_wf

[a:ℤ × ℕ+]. ∀[n:ℕ].  (ratexp(a;n) ∈ {r:ℤ × ℕ+ratreal(r) ratreal(a)^n} )


Proof




Definitions occuring in Statement :  ratexp: ratexp(x;n) ratreal: ratreal(r) rnexp: x^k1 req: y nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: ratexp: ratexp(x;n) nat_plus: + decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than rnexp_zero_lemma decidable__lt intformnot_wf int_formula_prop_not_lemma req_wf ratreal_wf int-to-real_wf subtract-1-ge-0 intformeq_wf int_formula_prop_eq_lemma int_subtype_base value-type-has-value int-value-type subtract_wf nat_plus_wf rnexp_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma istype-le set-value-type product-value-type istype-nat rdiv_wf rless-int rless_wf req-int-fractions2 subtype_base_sq nequal_wf decidable__equal_int itermMultiply_wf int_term_value_mul_lemma req_functionality ratreal-req req_weakening ratmul_wf rmul_wf req_transitivity rmul_functionality rmul_comm req_inversion rnexp_step
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType dependent_set_memberEquality_alt independent_pairEquality unionElimination equalityIstype because_Cache applyEquality baseClosed sqequalBase int_eqReduceFalseSq callbyvalueReduce setEquality productEquality intEquality isectIsTypeImplies productIsType closedConclusion inrFormation_alt productElimination imageMemberEquality instantiate cumulativity

Latex:
\mforall{}[a:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].    (ratexp(a;n)  \mmember{}  \{r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  ratreal(r)  =  ratreal(a)\^{}n\}  )



Date html generated: 2019_10_30-AM-09_30_09
Last ObjectModification: 2019_01_11-PM-05_13_56

Theory : reals


Home Index