Nuprl Lemma : ratexp_wf
∀[a:ℤ × ℕ+]. ∀[n:ℕ].  (ratexp(a;n) ∈ {r:ℤ × ℕ+| ratreal(r) = ratreal(a)^n} )
Proof
Definitions occuring in Statement : 
ratexp: ratexp(x;n)
, 
ratreal: ratreal(r)
, 
rnexp: x^k1
, 
req: x = y
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
ratexp: ratexp(x;n)
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
has-value: (a)↓
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
rnexp_zero_lemma, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
req_wf, 
ratreal_wf, 
int-to-real_wf, 
subtract-1-ge-0, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_subtype_base, 
value-type-has-value, 
int-value-type, 
subtract_wf, 
nat_plus_wf, 
rnexp_wf, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
istype-le, 
set-value-type, 
product-value-type, 
istype-nat, 
rdiv_wf, 
rless-int, 
rless_wf, 
req-int-fractions2, 
subtype_base_sq, 
nequal_wf, 
decidable__equal_int, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
req_functionality, 
ratreal-req, 
req_weakening, 
ratmul_wf, 
rmul_wf, 
req_transitivity, 
rmul_functionality, 
rmul_comm, 
req_inversion, 
rnexp_step
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
independent_pairEquality, 
unionElimination, 
equalityIstype, 
because_Cache, 
applyEquality, 
baseClosed, 
sqequalBase, 
int_eqReduceFalseSq, 
callbyvalueReduce, 
setEquality, 
productEquality, 
intEquality, 
isectIsTypeImplies, 
productIsType, 
closedConclusion, 
inrFormation_alt, 
productElimination, 
imageMemberEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}[a:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}].    (ratexp(a;n)  \mmember{}  \{r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  ratreal(r)  =  ratreal(a)\^{}n\}  )
Date html generated:
2019_10_30-AM-09_30_09
Last ObjectModification:
2019_01_11-PM-05_13_56
Theory : reals
Home
Index