Nuprl Lemma : ratmul_wf

[a,b:ℤ × ℕ+].  (ratmul(a;b) ∈ {r:ℤ × ℕ+ratreal(r) (ratreal(a) ratreal(b))} )


Proof




Definitions occuring in Statement :  ratmul: ratmul(a;b) ratreal: ratreal(r) req: y rmul: b nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ratmul: ratmul(a;b) all: x:A. B[x] implies:  Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a guard: {T} prop:
Lemmas referenced :  rat-mul_wf ratreduce_wf subtype_rel_sets_simple nat_plus_wf req_wf ratreal_wf rmul_wf req_inversion req_transitivity istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt setElimination rename applyEquality productEquality intEquality sqequalRule lambdaEquality_alt independent_isectElimination universeIsType because_Cache equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productIsType

Latex:
\mforall{}[a,b:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].    (ratmul(a;b)  \mmember{}  \{r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  ratreal(r)  =  (ratreal(a)  *  ratreal(b))\}  )



Date html generated: 2019_10_30-AM-09_22_13
Last ObjectModification: 2019_01_10-PM-01_47_54

Theory : reals


Home Index