Nuprl Lemma : rat-mul_wf

[a,b:ℤ × ℕ+].  (rat-mul(a;b) ∈ {r:ℤ × ℕ+ratreal(r) (ratreal(a) ratreal(b))} )


Proof




Definitions occuring in Statement :  rat-mul: rat-mul(x;y) ratreal: ratreal(r) req: y rmul: b nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rat-mul: rat-mul(x;y) has-value: (a)↓ uimplies: supposing a nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q prop: decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  value-type-has-value int-value-type mul_nat_plus req_functionality ratreal_wf rdiv_wf int-to-real_wf rless-int mul_bounds_1b rless_wf rmul_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf ratreal-req rmul_functionality rmul-int-fractions req_inversion req_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut productElimination thin sqequalRule callbyvalueReduce introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality independent_isectElimination hypothesis multiplyEquality hypothesisEquality because_Cache setElimination rename dependent_set_memberEquality_alt independent_pairEquality inrFormation_alt dependent_functionElimination independent_functionElimination universeIsType natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation inhabitedIsType productIsType

Latex:
\mforall{}[a,b:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].    (rat-mul(a;b)  \mmember{}  \{r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  ratreal(r)  =  (ratreal(a)  *  ratreal(b))\}  )



Date html generated: 2019_10_30-AM-09_21_10
Last ObjectModification: 2019_01_10-PM-01_42_10

Theory : reals


Home Index