Nuprl Lemma : ratreduce_wf

[x:ℤ × ℕ+]. (ratreduce(x) ∈ {y:ℤ × ℕ+ratreal(x) ratreal(y)} )


Proof




Definitions occuring in Statement :  ratreduce: ratreduce(x) ratreal: ratreal(r) req: y nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ratreduce: ratreduce(x) nat_plus: + and: P ∧ Q cand: c∧ B all: x:A. B[x] rev_implies:  Q iff: ⇐⇒ Q implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a or: P ∨ Q nequal: a ≠ b ∈  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B divides: a has-value: (a)↓ nat: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) less_than: a < b squash: T sq_type: SQType(T) guard: {T} int_nzero: -o true: True rneq: x ≠ y
Lemmas referenced :  better-gcd-gcd gcd_is_divisor_1 gcd_is_divisor_2 absval-divides gcd_wf absval-positive gcd-non-zero nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf int_subtype_base nequal_wf value-type-has-value nat_wf set-value-type le_wf int-value-type absval_wf decidable__le intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma istype-le subtype_base_sq decidable__lt itermMultiply_wf int_term_value_mul_lemma mul_positive_iff istype-less_than set_subtype_base less_than_wf nat_plus_wf decidable__equal_int divide-exact equal_wf squash_wf true_wf istype-universe divide_wfa int_nzero_wf subtype_rel_self iff_weakening_equal req_functionality ratreal_wf rdiv_wf int-to-real_wf rless-int rless_wf ratreal-req req_wf req-int-fractions nat_plus_inc_int_nzero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut productElimination thin sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination setElimination rename hypothesisEquality hypothesis dependent_functionElimination because_Cache independent_pairFormation independent_functionElimination promote_hyp independent_isectElimination inrFormation_alt lambdaFormation_alt natural_numberEquality approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType equalityIstype inhabitedIsType applyEquality baseClosed sqequalBase equalitySymmetry intEquality callbyvalueReduce equalityTransitivity dependent_set_memberEquality_alt unionElimination imageElimination instantiate cumulativity multiplyEquality productIsType baseApply closedConclusion universeEquality imageMemberEquality independent_pairEquality applyLambdaEquality

Latex:
\mforall{}[x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  (ratreduce(x)  \mmember{}  \{y:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  ratreal(x)  =  ratreal(y)\}  )



Date html generated: 2019_10_30-AM-09_19_36
Last ObjectModification: 2019_10_10-AM-10_35_01

Theory : reals


Home Index