Nuprl Lemma : gcd-non-zero

a,b:ℤ.  ((a ≠ 0 ∨ b ≠ 0)  gcd(a;b) ≠ 0)


Proof




Definitions occuring in Statement :  gcd: gcd(a;b) all: x:A. B[x] nequal: a ≠ b ∈  implies:  Q or: P ∨ Q natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False member: t ∈ T exists: x:A. B[x] and: P ∧ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop:
Lemmas referenced :  nequal_wf or_wf gcd_wf equal_wf int_formula_prop_wf int_formula_prop_not_lemma int_formula_prop_or_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf intformor_wf itermConstant_wf itermMultiply_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt int_subtype_base subtype_base_sq gcd-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality productElimination instantiate isectElimination cumulativity intEquality independent_isectElimination hypothesis equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll because_Cache

Latex:
\mforall{}a,b:\mBbbZ{}.    ((a  \mneq{}  0  \mvee{}  b  \mneq{}  0)  {}\mRightarrow{}  gcd(a;b)  \mneq{}  0)



Date html generated: 2016_05_14-PM-09_24_31
Last ObjectModification: 2016_01_14-PM-11_32_58

Theory : num_thy_1


Home Index