Nuprl Lemma : absval-divides
∀a,b:ℤ.  (|a| | b ⇐⇒ a | b)
Proof
Definitions occuring in Statement : 
divides: b | a, 
absval: |i|, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
iff: P ⇐⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b
Lemmas referenced : 
absval_unfold, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
istype-void, 
divides_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
divides_invar_1, 
minus-minus, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
minusEquality, 
natural_numberEquality, 
Error :inhabitedIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
because_Cache, 
lessCases, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
independent_pairFormation, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
Error :universeIsType, 
Error :dependent_pairFormation_alt, 
Error :equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity
Latex:
\mforall{}a,b:\mBbbZ{}.    (|a|  |  b  \mLeftarrow{}{}\mRightarrow{}  a  |  b)
Date html generated:
2019_06_20-PM-02_20_02
Last ObjectModification:
2019_01_10-PM-01_19_34
Theory : num_thy_1
Home
Index