Nuprl Lemma : real-continuity-principle_wf
real-continuity-principle() ∈ ℙ
Proof
Definitions occuring in Statement : 
real-continuity-principle: real-continuity-principle()
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
real-continuity-principle: real-continuity-principle()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
all_wf, 
interval_wf, 
rfun_wf, 
continuous_wf, 
real_wf, 
i-member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
setEquality
Latex:
real-continuity-principle()  \mmember{}  \mBbbP{}
Date html generated:
2016_05_18-AM-10_52_04
Last ObjectModification:
2015_12_27-PM-10_44_24
Theory : reals
Home
Index