Nuprl Lemma : real-has-valueall

[x:ℝ]. has-valueall(x)


Proof




Definitions occuring in Statement :  real: has-valueall: has-valueall(a) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a has-valueall: has-valueall(a) has-value: (a)↓ exists: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop:
Lemmas referenced :  function-valueall-type nat_plus_wf valueall-type-has-valueall real_wf less_than_wf int-value-type value-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination hypothesis sqequalRule lambdaEquality intEquality independent_isectElimination functionEquality hypothesisEquality axiomSqleEquality dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed

Latex:
\mforall{}[x:\mBbbR{}].  has-valueall(x)



Date html generated: 2017_10_02-PM-07_13_17
Last ObjectModification: 2017_06_01-PM-05_52_33

Theory : reals


Home Index