Nuprl Lemma : real-matrix-add_wf
∀[a,b:ℕ]. ∀[A,B:ℝ(a × b)]. (A + B ∈ ℝ(a × b))
Proof
Definitions occuring in Statement :
real-matrix-add: A + B
,
rmatrix: ℝ(a × b)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
rmatrix: ℝ(a × b)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
real-matrix-add: A + B
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
nat: ℕ
Lemmas referenced :
radd_wf,
int_seg_wf,
real_wf,
istype-nat
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation_alt,
introduction,
cut,
lambdaEquality_alt,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
applyEquality,
hypothesisEquality,
hypothesis,
universeIsType,
setElimination,
rename,
productElimination,
natural_numberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
inhabitedIsType,
isect_memberEquality_alt,
isectIsTypeImplies,
functionIsType
Latex:
\mforall{}[a,b:\mBbbN{}]. \mforall{}[A,B:\mBbbR{}(a \mtimes{} b)]. (A + B \mmember{} \mBbbR{}(a \mtimes{} b))
Date html generated:
2019_10_30-AM-08_17_32
Last ObjectModification:
2019_09_19-AM-11_48_35
Theory : reals
Home
Index