Nuprl Lemma : reals-connected-ext

Connected(ℝ)


Proof




Definitions occuring in Statement :  connected: Connected(X) real:
Definitions unfolded in proof :  member: t ∈ T ifthenelse: if then else fi  subtract: m spreadn: spread3 isl: isl(x) btrue: tt it: bfalse: ff let: let isr: isr(x) decdr-to-bool: bool(d) pi1: fst(t) pi2: snd(t) cover-real: cover-real(d; a; b; cb) accelerate: accelerate(k;f) altered-seq1: altered-seq1(d; a; b; x; n) blended-real: blended-real(k;x;y) outl: outl(x) altered-seq2: altered-seq2(d; a; b; x; n) outr: outr(x) cover-search-left: cover-search-left(d;a;b;x) WCPR: WCPR(F;x;G) WCP: WCP(F;f;G) mu: mu(f) mu-ge: mu-ge(f;n) eq_bool: =b q bor: p ∨bq band: p ∧b q cover-search-right: cover-search-right(d;a;b;x) reals-connected inhabited-covers-real-implies-ext assert_functionality_wrt_uiff connectedness-main-lemma-ext uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  reals-connected lifting-strict-callbyvalue istype-void strict4-spread lifting-strict-decide strict4-decide inhabited-covers-real-implies-ext assert_functionality_wrt_uiff connectedness-main-lemma-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
Connected(\mBbbR{})



Date html generated: 2019_10_30-AM-07_37_15
Last ObjectModification: 2019_10_10-AM-11_48_44

Theory : reals


Home Index