Nuprl Lemma : req-from-converges

[x:ℕ ⟶ ℝ]. ∀[y:ℝ]. ∀[cvg:lim n→∞.x[n] y].  (y cauchy-limit(n.x[n];λk.(cvg (2 k))))


Proof




Definitions occuring in Statement :  cauchy-limit: cauchy-limit(n.x[n];c) converges-to: lim n→∞.x[n] y req: y real: nat: uall: [x:A]. B[x] so_apply: x[s] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] multiply: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) implies:  Q squash: T prop: all: x:A. B[x] uimplies: supposing a
Lemmas referenced :  converges-cauchy-witness sq_stable__req cauchy-limit_wf nat_wf converges-to_wf real_wf converges-to-cauchy-limit unique-limit
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality independent_functionElimination imageMemberEquality baseClosed imageElimination functionEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[y:\mBbbR{}].  \mforall{}[cvg:lim  n\mrightarrow{}\minfty{}.x[n]  =  y].    (y  =  cauchy-limit(n.x[n];\mlambda{}k.(cvg  (2  *  k))))



Date html generated: 2016_10_26-AM-09_16_14
Last ObjectModification: 2016_08_29-PM-06_33_04

Theory : reals


Home Index