Nuprl Lemma : req-from-converges
∀[x:ℕ ⟶ ℝ]. ∀[y:ℝ]. ∀[cvg:lim n→∞.x[n] = y].  (y = cauchy-limit(n.x[n];λk.(cvg (2 * k))))
Proof
Definitions occuring in Statement : 
cauchy-limit: cauchy-limit(n.x[n];c)
, 
converges-to: lim n→∞.x[n] = y
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
converges-cauchy-witness, 
sq_stable__req, 
cauchy-limit_wf, 
nat_wf, 
converges-to_wf, 
real_wf, 
converges-to-cauchy-limit, 
unique-limit
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[y:\mBbbR{}].  \mforall{}[cvg:lim  n\mrightarrow{}\minfty{}.x[n]  =  y].    (y  =  cauchy-limit(n.x[n];\mlambda{}k.(cvg  (2  *  k))))
Date html generated:
2016_10_26-AM-09_16_14
Last ObjectModification:
2016_08_29-PM-06_33_04
Theory : reals
Home
Index