Nuprl Lemma : converges-cauchy-witness
∀[x:ℕ ⟶ ℝ]. ∀[y:ℝ]. ∀[cvg:lim n→∞.x[n] = y].  (λk.(cvg (2 * k)) ∈ cauchy(n.x[n]))
Proof
Definitions occuring in Statement : 
cauchy: cauchy(n.x[n])
, 
converges-to: lim n→∞.x[n] = y
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
converges: x[n]↓ as n→∞
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
converges-iff-cauchy-ext, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
top: Top
, 
rev_implies: P 
⇐ Q
, 
pi1: fst(t)
Lemmas referenced : 
converges-to_wf, 
nat_wf, 
real_wf, 
converges-iff-cauchy-ext, 
all_wf, 
iff_wf, 
converges_wf, 
cauchy_wf, 
pi1_wf_top, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependent_pairEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
instantiate, 
lambdaFormation, 
productElimination, 
independent_pairEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[y:\mBbbR{}].  \mforall{}[cvg:lim  n\mrightarrow{}\minfty{}.x[n]  =  y].    (\mlambda{}k.(cvg  (2  *  k))  \mmember{}  cauchy(n.x[n]))
Date html generated:
2016_10_26-AM-09_16_06
Last ObjectModification:
2016_08_29-PM-06_26_26
Theory : reals
Home
Index