Nuprl Lemma : converges-cauchy-witness

[x:ℕ ⟶ ℝ]. ∀[y:ℝ]. ∀[cvg:lim n→∞.x[n] y].  k.(cvg (2 k)) ∈ cauchy(n.x[n]))


Proof




Definitions occuring in Statement :  cauchy: cauchy(n.x[n]) converges-to: lim n→∞.x[n] y real: nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] multiply: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T converges: x[n]↓ as n→∞ exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: converges-iff-cauchy-ext all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q top: Top rev_implies:  Q pi1: fst(t)
Lemmas referenced :  converges-to_wf nat_wf real_wf converges-iff-cauchy-ext all_wf iff_wf converges_wf cauchy_wf pi1_wf_top equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_pairEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality functionExtensionality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality instantiate lambdaFormation productElimination independent_pairEquality voidElimination voidEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[y:\mBbbR{}].  \mforall{}[cvg:lim  n\mrightarrow{}\minfty{}.x[n]  =  y].    (\mlambda{}k.(cvg  (2  *  k))  \mmember{}  cauchy(n.x[n]))



Date html generated: 2016_10_26-AM-09_16_06
Last ObjectModification: 2016_08_29-PM-06_26_26

Theory : reals


Home Index