Nuprl Lemma : cauchy_wf

[x:ℕ ⟶ ℝ]. (cauchy(n.x[n]) ∈ ℙ)


Proof




Definitions occuring in Statement :  cauchy: cauchy(n.x[n]) real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cauchy: cauchy(n.x[n]) so_lambda: λ2x.t[x] implies:  Q prop: nat: so_apply: x[s] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  real_wf rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties nat_properties rless-int int-to-real_wf rdiv_wf rsub_wf rabs_wf rleq_wf le_wf nat_wf sq_exists_wf nat_plus_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality because_Cache functionEquality setElimination rename hypothesisEquality applyEquality natural_numberEquality independent_isectElimination inrFormation dependent_functionElimination productElimination independent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (cauchy(n.x[n])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_38_17
Last ObjectModification: 2016_01_17-AM-02_04_06

Theory : reals


Home Index