Nuprl Lemma : cauchy-limit_wf

[x:ℕ ⟶ ℝ]. ∀[c:cauchy(n.x[n])].  (cauchy-limit(n.x[n];c) ∈ ℝ)


Proof




Definitions occuring in Statement :  cauchy-limit: cauchy-limit(n.x[n];c) cauchy: cauchy(n.x[n]) real: nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] cauchy-limit: cauchy-limit(n.x[n];c) converges-iff-cauchy-ext so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q prop: iff: ⇐⇒ Q rev_implies:  Q and: P ∧ Q pi2: snd(t) pi1: fst(t) subtype_rel: A ⊆B converges: x[n]↓ as n→∞ exists: x:A. B[x] top: Top
Lemmas referenced :  converges-iff-cauchy-ext all_wf nat_wf real_wf iff_wf converges_wf cauchy_wf equal_wf pi1_wf_top exists_wf converges-to_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate extract_by_obid hypothesis sqequalHypSubstitution isectElimination functionEquality lambdaEquality applyEquality functionExtensionality hypothesisEquality lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality Error :applyLambdaEquality,  productElimination independent_pairEquality voidElimination voidEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[c:cauchy(n.x[n])].    (cauchy-limit(n.x[n];c)  \mmember{}  \mBbbR{})



Date html generated: 2016_10_26-AM-09_15_48
Last ObjectModification: 2016_08_29-PM-06_11_28

Theory : reals


Home Index