Nuprl Lemma : cauchy-limit_wf
∀[x:ℕ ⟶ ℝ]. ∀[c:cauchy(n.x[n])].  (cauchy-limit(n.x[n];c) ∈ ℝ)
Proof
Definitions occuring in Statement : 
cauchy-limit: cauchy-limit(n.x[n];c)
, 
cauchy: cauchy(n.x[n])
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
cauchy-limit: cauchy-limit(n.x[n];c)
, 
converges-iff-cauchy-ext, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
converges: x[n]↓ as n→∞
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
converges-iff-cauchy-ext, 
all_wf, 
nat_wf, 
real_wf, 
iff_wf, 
converges_wf, 
cauchy_wf, 
equal_wf, 
pi1_wf_top, 
exists_wf, 
converges-to_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
Error :applyLambdaEquality, 
productElimination, 
independent_pairEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[c:cauchy(n.x[n])].    (cauchy-limit(n.x[n];c)  \mmember{}  \mBbbR{})
Date html generated:
2016_10_26-AM-09_15_48
Last ObjectModification:
2016_08_29-PM-06_11_28
Theory : reals
Home
Index