Nuprl Lemma : rinv-neq-zero

x:ℝ(x ≠ r0  rinv(x) ≠ r0)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rinv: rinv(x) int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T prop: uall: [x:A]. B[x] guard: {T}
Lemmas referenced :  rinv-negative rless_wf int-to-real_wf rinv_wf2 rinv-positive rneq_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis addLevel sqequalHypSubstitution unionElimination thin inlFormation lemma_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination isectElimination natural_numberEquality sqequalRule inrFormation levelHypothesis

Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  rinv(x)  \mneq{}  r0)



Date html generated: 2016_05_18-AM-07_12_07
Last ObjectModification: 2015_12_28-AM-00_40_02

Theory : reals


Home Index