Nuprl Lemma : rinv-neq-zero
∀x:ℝ. (x ≠ r0 
⇒ rinv(x) ≠ r0)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
rinv: rinv(x)
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
Lemmas referenced : 
rinv-negative, 
rless_wf, 
int-to-real_wf, 
rinv_wf2, 
rinv-positive, 
rneq_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
addLevel, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
inlFormation, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
natural_numberEquality, 
sqequalRule, 
inrFormation, 
levelHypothesis
Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  {}\mRightarrow{}  rinv(x)  \mneq{}  r0)
Date html generated:
2016_05_18-AM-07_12_07
Last ObjectModification:
2015_12_28-AM-00_40_02
Theory : reals
Home
Index