Nuprl Lemma : rmax-rmin-absorption
∀b,a:ℝ.  (rmax(b;rmin(b;a)) = b)
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y), 
rmax: rmax(x;y), 
req: x = y, 
real: ℝ, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
squash: ↓T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
real_wf, 
req_weakening, 
iff_weakening_equal, 
rmax-rmin-absorption-strong, 
true_wf, 
squash_wf, 
req_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}b,a:\mBbbR{}.    (rmax(b;rmin(b;a))  =  b)
 Date html generated: 
2016_05_18-AM-06_59_54
 Last ObjectModification: 
2016_01_13-PM-04_30_02
Theory : reals
Home
Index