Nuprl Lemma : rv-be_wf

[n:ℕ]. ∀[a,b,c:ℝ^n].  (a_b_c ∈ ℙ)


Proof




Definitions occuring in Statement :  rv-be: a_b_c real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  and: P ∧ Q prop: rv-be: a_b_c member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf real-vec_wf rv-between_wf real-vec-sep_wf not_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality productEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c:\mBbbR{}\^{}n].    (a\_b\_c  \mmember{}  \mBbbP{})



Date html generated: 2016_10_28-AM-07_38_01
Last ObjectModification: 2016_10_27-PM-01_29_07

Theory : reals


Home Index