Nuprl Lemma : rv-inner-Pasch2
∀n:ℕ. ∀a,b,c,p,q:ℝ^n.
  (a ≠ p
  
⇒ b ≠ c
  
⇒ rv-T(n;a;p;c)
  
⇒ rv-T(n;b;q;c)
  
⇒ (∃x:ℝ^n
       ((((a ≠ q ∧ p ≠ c ∧ b ≠ q) 
⇒ a-x-q) ∧ ((b ≠ p ∧ q ≠ c ∧ b ≠ q) 
⇒ b-x-p)) ∧ rv-T(n;a;x;q) ∧ rv-T(n;b;x;p))))
Proof
Definitions occuring in Statement : 
rv-T: rv-T(n;a;b;c)
, 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-inner-Pasch3, 
rv-between-iff, 
real-vec-sep-symmetry, 
real-vec-sep_wf, 
rv-between_wf, 
rv-T_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation, 
because_Cache, 
productEquality, 
isectElimination, 
functionEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,p,q:\mBbbR{}\^{}n.
    (a  \mneq{}  p
    {}\mRightarrow{}  b  \mneq{}  c
    {}\mRightarrow{}  rv-T(n;a;p;c)
    {}\mRightarrow{}  rv-T(n;b;q;c)
    {}\mRightarrow{}  (\mexists{}x:\mBbbR{}\^{}n
              ((((a  \mneq{}  q  \mwedge{}  p  \mneq{}  c  \mwedge{}  b  \mneq{}  q)  {}\mRightarrow{}  a-x-q)  \mwedge{}  ((b  \mneq{}  p  \mwedge{}  q  \mneq{}  c  \mwedge{}  b  \mneq{}  q)  {}\mRightarrow{}  b-x-p))
              \mwedge{}  rv-T(n;a;x;q)
              \mwedge{}  rv-T(n;b;x;p))))
Date html generated:
2016_10_26-AM-10_50_15
Last ObjectModification:
2016_10_24-PM-03_49_28
Theory : reals
Home
Index