Nuprl Lemma : rv-between-iff
∀n:ℕ. ∀a,b,c:ℝ^n.  (a-b-c 
⇐⇒ a ≠ b ∧ b ≠ c ∧ a ≠ c ∧ rv-T(n;a;b;c))
Proof
Definitions occuring in Statement : 
rv-T: rv-T(n;a;b;c)
, 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
rv-between: a-b-c
, 
rv-T: rv-T(n;a;b;c)
, 
not: ¬A
, 
false: False
, 
real-vec-be: real-vec-be(n;a;b;c)
, 
exists: ∃x:A. B[x]
, 
real-vec-between: a-b-c
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
req-vec: req-vec(n;x;y)
, 
real-vec-mul: a*X
, 
real-vec-add: X + Y
, 
nat: ℕ
, 
real-vec: ℝ^n
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rsub: x - y
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
real-vec-sep: a ≠ b
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
rooint: (l, u)
Lemmas referenced : 
rv-between_wf, 
real-vec-sep_wf, 
rv-T_wf, 
real-vec_wf, 
nat_wf, 
rv-between-sep, 
rv-between-symmetry, 
real-vec-sep-symmetry, 
not_wf, 
rv-non-strict-between-iff, 
i-member_wf, 
rooint_wf, 
int-to-real_wf, 
req-vec_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
rsub_wf, 
real-vec-dist-between-1, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
rmul_wf, 
rabs_wf, 
req_functionality, 
real-vec-dist_functionality, 
req-vec_inversion, 
req-vec_weakening, 
req_weakening, 
int_seg_wf, 
radd_wf, 
req_wf, 
rminus_wf, 
uiff_transitivity, 
radd_functionality, 
req_transitivity, 
rmul-distrib, 
rmul_over_rminus, 
rminus_functionality, 
rmul-one-both, 
rmul_comm, 
rminus-radd, 
req_inversion, 
radd-assoc, 
radd-ac, 
radd_comm, 
rminus-as-rmul, 
rmul_functionality, 
rmul-identity1, 
rmul-distrib2, 
radd-int, 
rmul-zero-both, 
rminus-rminus, 
radd-zero-both, 
rmul_preserves_rless, 
rless_wf, 
rless_functionality, 
rless_transitivity1, 
rleq_weakening, 
radd-preserves-req, 
radd-rminus-assoc, 
rmul-int, 
uiff_transitivity3, 
squash_wf, 
true_wf, 
rminus-int, 
rabs_functionality, 
real-vec-dist-symmetry, 
radd-preserves-rleq, 
rabs-of-nonneg, 
rleq_functionality, 
radd-rminus-both, 
radd-preserves-rless
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
productEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
dependent_pairFormation, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
sqequalRule, 
independent_isectElimination, 
minusEquality, 
addEquality, 
addLevel, 
multiplyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
promote_hyp
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (a-b-c  \mLeftarrow{}{}\mRightarrow{}  a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  a  \mneq{}  c  \mwedge{}  rv-T(n;a;b;c))
Date html generated:
2016_10_26-AM-10_46_33
Last ObjectModification:
2016_10_05-PM-01_21_14
Theory : reals
Home
Index