Nuprl Lemma : rv-between-iff

n:ℕ. ∀a,b,c:ℝ^n.  (a-b-c ⇐⇒ a ≠ b ∧ b ≠ c ∧ a ≠ c ∧ rv-T(n;a;b;c))


Proof




Definitions occuring in Statement :  rv-T: rv-T(n;a;b;c) rv-between: a-b-c real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q rv-between: a-b-c rv-T: rv-T(n;a;b;c) not: ¬A false: False real-vec-be: real-vec-be(n;a;b;c) exists: x:A. B[x] real-vec-between: a-b-c cand: c∧ B subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q) req-vec: req-vec(n;x;y) real-vec-mul: a*X real-vec-add: Y nat: real-vec: ^n rev_uimplies: rev_uimplies(P;Q) rsub: y rless: x < y sq_exists: x:{A| B[x]} real-vec-sep: a ≠ b guard: {T} true: True squash: T i-member: r ∈ I rccint: [l, u] rooint: (l, u)
Lemmas referenced :  rv-between_wf real-vec-sep_wf rv-T_wf real-vec_wf nat_wf rv-between-sep rv-between-symmetry real-vec-sep-symmetry not_wf rv-non-strict-between-iff i-member_wf rooint_wf int-to-real_wf req-vec_wf real-vec-add_wf real-vec-mul_wf rsub_wf real-vec-dist-between-1 real-vec-dist_wf real_wf rleq_wf rmul_wf rabs_wf req_functionality real-vec-dist_functionality req-vec_inversion req-vec_weakening req_weakening int_seg_wf radd_wf req_wf rminus_wf uiff_transitivity radd_functionality req_transitivity rmul-distrib rmul_over_rminus rminus_functionality rmul-one-both rmul_comm rminus-radd req_inversion radd-assoc radd-ac radd_comm rminus-as-rmul rmul_functionality rmul-identity1 rmul-distrib2 radd-int rmul-zero-both rminus-rminus radd-zero-both rmul_preserves_rless rless_wf rless_functionality rless_transitivity1 rleq_weakening radd-preserves-req radd-rminus-assoc rmul-int uiff_transitivity3 squash_wf true_wf rminus-int rabs_functionality real-vec-dist-symmetry radd-preserves-rleq rabs-of-nonneg rleq_functionality radd-rminus-both radd-preserves-rless
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination productEquality dependent_functionElimination independent_functionElimination because_Cache voidElimination dependent_pairFormation natural_numberEquality applyEquality lambdaEquality setElimination rename setEquality sqequalRule independent_isectElimination minusEquality addEquality addLevel multiplyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed promote_hyp

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (a-b-c  \mLeftarrow{}{}\mRightarrow{}  a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  a  \mneq{}  c  \mwedge{}  rv-T(n;a;b;c))



Date html generated: 2016_10_26-AM-10_46_33
Last ObjectModification: 2016_10_05-PM-01_21_14

Theory : reals


Home Index