Nuprl Lemma : rv-between-sep

n:ℕ. ∀a,b,c:ℝ^n.  (a-b-c  a ≠ b)


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b real-vec: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rv-between: a-b-c and: P ∧ Q real-vec-between: a-b-c exists: x:A. B[x] member: t ∈ T top: Top real-vec-sep: a ≠ b prop: uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q rsub: y uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) guard: {T}
Lemmas referenced :  member_rooint_lemma rv-between_wf real-vec_wf nat_wf int-to-real_wf real-vec-dist_wf real_wf rleq_wf real-vec-add_wf real-vec-mul_wf rsub_wf rless_functionality req_weakening real-vec-dist_functionality req-vec_weakening rmul_wf rabs_wf real-vec-dist-between-1 rmul_preserves_rless radd_wf rminus_wf rmul-zero-both rmul_comm radd-preserves-rleq rleq_weakening_rless radd-preserves-rless rless_wf rabs-of-nonneg uiff_transitivity rleq_functionality radd_comm radd-ac radd_functionality radd-rminus-both radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut introduction extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality natural_numberEquality applyEquality lambdaEquality setElimination rename setEquality because_Cache independent_isectElimination independent_functionElimination promote_hyp addLevel levelHypothesis

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (a-b-c  {}\mRightarrow{}  a  \mneq{}  b)



Date html generated: 2016_10_26-AM-10_37_28
Last ObjectModification: 2016_09_25-AM-00_09_42

Theory : reals


Home Index