Nuprl Lemma : rv-non-strict-between-iff

n:ℕ. ∀a,b,c:ℝ^n.  (a ≠  (a ≠ b ∧ b ≠ c ∧ a-b-c)) ⇐⇒ real-vec-be(n;a;b;c)))


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec-sep: a ≠ b real-vec-be: real-vec-be(n;a;b;c) real-vec: ^n nat: all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q not: ¬A false: False stable: Stable{P} uimplies: supposing a or: P ∨ Q rv-between: a-b-c real-vec-between: a-b-c exists: x:A. B[x] real-vec-be: real-vec-be(n;a;b;c) cand: c∧ B top: Top guard: {T} i-member: r ∈ I rccint: [l, u] le: A ≤ B less_than': less_than'(a;b) real-vec-mul: a*X real-vec-add: Y req-vec: req-vec(n;x;y) nat: real-vec: ^n uiff: uiff(P;Q) subtract: m rev_uimplies: rev_uimplies(P;Q) rooint: (l, u)
Lemmas referenced :  not_wf real-vec-sep_wf rv-between_wf real-vec-be_wf real-vec_wf nat_wf stable_real-vec-be false_wf or_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle member_rooint_lemma member_rccint_lemma rleq_weakening_rless int-to-real_wf i-member_wf rccint_wf req-vec_wf real-vec-add_wf real-vec-mul_wf rsub_wf rleq_weakening_equal rleq-int int_seg_wf req_wf radd_wf rmul_wf subtract_wf req_weakening not-real-vec-sep-iff-eq uiff_transitivity req_functionality radd_functionality rmul_functionality rsub-int rmul-zero-both rmul-one-both radd-zero-both req-vec_functionality req-vec_weakening radd_comm req-vec_inversion rless_wf rooint_wf not-rless rleq_antisymmetry real-vec-add_functionality real-vec-mul_functionality rsub_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality hypothesis independent_functionElimination voidElimination dependent_functionElimination independent_isectElimination functionEquality unionElimination productElimination dependent_pairFormation isect_memberEquality voidEquality natural_numberEquality sqequalRule because_Cache setElimination rename applyEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (a  \mneq{}  c  {}\mRightarrow{}  (\mneg{}(a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  (\mneg{}a-b-c))  \mLeftarrow{}{}\mRightarrow{}  real-vec-be(n;a;b;c)))



Date html generated: 2016_10_26-AM-10_45_06
Last ObjectModification: 2016_09_29-PM-09_07_20

Theory : reals


Home Index