Nuprl Lemma : rv-non-strict-between-iff
∀n:ℕ. ∀a,b,c:ℝ^n.  (a ≠ c 
⇒ (¬(a ≠ b ∧ b ≠ c ∧ (¬a-b-c)) 
⇐⇒ real-vec-be(n;a;b;c)))
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec-sep: a ≠ b
, 
real-vec-be: real-vec-be(n;a;b;c)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
rv-between: a-b-c
, 
real-vec-between: a-b-c
, 
exists: ∃x:A. B[x]
, 
real-vec-be: real-vec-be(n;a;b;c)
, 
cand: A c∧ B
, 
top: Top
, 
guard: {T}
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
real-vec-mul: a*X
, 
real-vec-add: X + Y
, 
req-vec: req-vec(n;x;y)
, 
nat: ℕ
, 
real-vec: ℝ^n
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rooint: (l, u)
Lemmas referenced : 
not_wf, 
real-vec-sep_wf, 
rv-between_wf, 
real-vec-be_wf, 
real-vec_wf, 
nat_wf, 
stable_real-vec-be, 
false_wf, 
or_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
member_rooint_lemma, 
member_rccint_lemma, 
rleq_weakening_rless, 
int-to-real_wf, 
i-member_wf, 
rccint_wf, 
req-vec_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
rsub_wf, 
rleq_weakening_equal, 
rleq-int, 
int_seg_wf, 
req_wf, 
radd_wf, 
rmul_wf, 
subtract_wf, 
req_weakening, 
not-real-vec-sep-iff-eq, 
uiff_transitivity, 
req_functionality, 
radd_functionality, 
rmul_functionality, 
rsub-int, 
rmul-zero-both, 
rmul-one-both, 
radd-zero-both, 
req-vec_functionality, 
req-vec_weakening, 
radd_comm, 
req-vec_inversion, 
rless_wf, 
rooint_wf, 
not-rless, 
rleq_antisymmetry, 
real-vec-add_functionality, 
real-vec-mul_functionality, 
rsub_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
independent_isectElimination, 
functionEquality, 
unionElimination, 
productElimination, 
dependent_pairFormation, 
isect_memberEquality, 
voidEquality, 
natural_numberEquality, 
sqequalRule, 
because_Cache, 
setElimination, 
rename, 
applyEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (a  \mneq{}  c  {}\mRightarrow{}  (\mneg{}(a  \mneq{}  b  \mwedge{}  b  \mneq{}  c  \mwedge{}  (\mneg{}a-b-c))  \mLeftarrow{}{}\mRightarrow{}  real-vec-be(n;a;b;c)))
Date html generated:
2016_10_26-AM-10_45_06
Last ObjectModification:
2016_09_29-PM-09_07_20
Theory : reals
Home
Index