Nuprl Lemma : sq_stable__real-vec-sep
∀n:ℕ. ∀a,b:ℝ^n.  SqStable(a ≠ b)
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
real-vec-sep: a ≠ b
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
sq_stable__rless, 
int-to-real_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
real-vec_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
sqequalRule
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbR{}\^{}n.    SqStable(a  \mneq{}  b)
Date html generated:
2017_10_03-AM-10_59_08
Last ObjectModification:
2017_08_11-PM-05_28_49
Theory : reals
Home
Index