Nuprl Lemma : sq_stable__real-vec-sep

n:ℕ. ∀a,b:ℝ^n.  SqStable(a ≠ b)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec: ^n nat: sq_stable: SqStable(P) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] real-vec-sep: a ≠ b member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop:
Lemmas referenced :  sq_stable__rless int-to-real_wf real-vec-dist_wf real_wf rleq_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis hypothesisEquality applyEquality lambdaEquality setElimination rename setEquality sqequalRule

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbR{}\^{}n.    SqStable(a  \mneq{}  b)



Date html generated: 2017_10_03-AM-10_59_08
Last ObjectModification: 2017_08_11-PM-05_28_49

Theory : reals


Home Index