Nuprl Lemma : trivial-subinterval

I:Interval. [left-endpoint(I), right-endpoint(I)] ⊆ I  supposing icompact(I)


Proof




Definitions occuring in Statement :  subinterval: I ⊆  icompact: icompact(I) rccint: [l, u] right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) interval: Interval uimplies: supposing a all: x:A. B[x]
Definitions unfolded in proof :  icompact: icompact(I) cand: c∧ B rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] prop: squash: T implies:  Q sq_stable: SqStable(P) member: t ∈ T uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  rleq_wf icompact-endpoints right-endpoint_wf left-endpoint_wf rcc-subinterval interval_wf icompact_wf sq_stable__icompact
Rules used in proof :  independent_pairFormation productElimination because_Cache independent_isectElimination isectElimination imageElimination baseClosed imageMemberEquality sqequalRule independent_functionElimination hypothesis hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}I:Interval.  [left-endpoint(I),  right-endpoint(I)]  \msubseteq{}  I    supposing  icompact(I)



Date html generated: 2018_07_29-AM-09_40_05
Last ObjectModification: 2018_07_02-PM-00_27_01

Theory : reals


Home Index