Nuprl Lemma : trivial-subinterval
∀I:Interval. [left-endpoint(I), right-endpoint(I)] ⊆ I  supposing icompact(I)
Proof
Definitions occuring in Statement : 
subinterval: I ⊆ J 
, 
icompact: icompact(I)
, 
rccint: [l, u]
, 
right-endpoint: right-endpoint(I)
, 
left-endpoint: left-endpoint(I)
, 
interval: Interval
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
icompact: icompact(I)
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rleq_wf, 
icompact-endpoints, 
right-endpoint_wf, 
left-endpoint_wf, 
rcc-subinterval, 
interval_wf, 
icompact_wf, 
sq_stable__icompact
Rules used in proof : 
independent_pairFormation, 
productElimination, 
because_Cache, 
independent_isectElimination, 
isectElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}I:Interval.  [left-endpoint(I),  right-endpoint(I)]  \msubseteq{}  I    supposing  icompact(I)
Date html generated:
2018_07_29-AM-09_40_05
Last ObjectModification:
2018_07_02-PM-00_27_01
Theory : reals
Home
Index