Nuprl Lemma : real_exp-req
∀[x:ℝ]. (real_exp(x) = e^x)
Proof
Definitions occuring in Statement : 
real_exp: real_exp(x), 
rexp: e^x, 
req: x = y, 
real: ℝ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
subtype_rel: A ⊆r B
Lemmas referenced : 
real_exp_wf, 
sq_stable__req, 
rexp_wf, 
req_witness, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
setElimination, 
rename, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality_alt, 
universeIsType
Latex:
\mforall{}[x:\mBbbR{}].  (real\_exp(x)  =  e\^{}x)
Date html generated:
2019_10_30-AM-11_41_23
Last ObjectModification:
2019_02_04-PM-11_47_34
Theory : reals_2
Home
Index