Nuprl Lemma : rexp_wf

[x:ℝ]. (e^x ∈ ℝ)


Proof




Definitions occuring in Statement :  rexp: e^x real: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rexp: e^x so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_apply: x[s] uimplies: supposing a prop: all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q
Lemmas referenced :  exp-exists-ext all_wf real_wf exists_wf series-sum_wf int-rdiv_wf fact_wf subtype_rel_sets less_than_wf nequal_wf nat_plus_properties nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base rnexp_wf nat_wf pi1_wf_top equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid hypothesis sqequalHypSubstitution isectElimination sqequalRule lambdaEquality because_Cache hypothesisEquality applyEquality intEquality natural_numberEquality independent_isectElimination setElimination rename setEquality lambdaFormation equalityTransitivity equalitySymmetry Error :applyLambdaEquality,  dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseClosed independent_functionElimination functionExtensionality productElimination independent_pairEquality axiomEquality

Latex:
\mforall{}[x:\mBbbR{}].  (e\^{}x  \mmember{}  \mBbbR{})



Date html generated: 2016_10_26-AM-09_27_01
Last ObjectModification: 2016_08_26-PM-02_48_30

Theory : reals


Home Index