Nuprl Lemma : exp-exists-ext
∀x:ℝ. ∃a:ℝ. Σn.(x^n)/(n)! = a
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a, 
rnexp: x^k1, 
int-rdiv: (a)/k1, 
real: ℝ, 
fact: (n)!, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x]
Definitions unfolded in proof : 
canonical-bound-property, 
rmul_preserves_rleq, 
r-archimedean, 
ratio-test-ext, 
rleq_functionality, 
r-archimedean2, 
iff_weakening_equal, 
exp-series-converges, 
exp-exists, 
guard: {T}, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
sq_type: SQType(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
reg-seq-mul: reg-seq-mul(x;y), 
bnot: ¬bb, 
le_int: i ≤z j, 
reg-seq-adjust: reg-seq-adjust(n;x), 
reg-seq-inv: reg-seq-inv(x), 
canonical-bound: canonical-bound(r), 
imax: imax(a;b), 
accelerate: accelerate(k;f), 
eq_int: (i =z j), 
btrue: tt, 
bfalse: ff, 
mu-ge: mu-ge(f;n), 
rinv: rinv(x), 
int-to-real: r(n), 
rmul: a * b, 
rdiv: (x/y), 
absval: |i|, 
lt_int: i <z j, 
ifthenelse: if b then t else f fi , 
quick-find: quick-find(p;n), 
rlessw: rlessw(x;y), 
rminus: -(x), 
so_lambda: λ2x.t[x], 
member: t ∈ T
Lemmas referenced : 
int_subtype_base, 
subtype_base_sq, 
exp-exists, 
canonical-bound-property, 
rmul_preserves_rleq, 
r-archimedean, 
ratio-test-ext, 
rleq_functionality, 
r-archimedean2, 
iff_weakening_equal, 
exp-series-converges
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
independent_isectElimination, 
intEquality, 
cumulativity, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}x:\mBbbR{}.  \mexists{}a:\mBbbR{}.  \mSigma{}n.(x\^{}n)/(n)!  =  a
Date html generated:
2018_05_22-PM-02_04_08
Last ObjectModification:
2018_05_21-AM-00_16_53
Theory : reals
Home
Index