Nuprl Lemma : r-archimedean2

x:ℝ. ∃N:ℕ. ∀n:{N...}. (|(x/r(n 1))| ≤ (r1/r(2)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rabs: |x| int-to-real: r(n) real: int_upper: {i...} nat: all: x:A. B[x] exists: x:A. B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T rge: x ≥ y top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) ge: i ≥  nat: rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) true: True less_than': less_than'(a;b) squash: T less_than: a < b prop: implies:  Q rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a and: P ∧ Q exists: x:A. B[x] uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_upper: {i...} so_apply: x[s] subtype_rel: A ⊆B rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  real_wf rleq_weakening_equal rleq_functionality_wrt_implies rmul_comm rmul-rdiv-cancel2 req_weakening rleq_functionality uiff_transitivity int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermConstant_wf itermAdd_wf itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le nat_properties rleq-int rless_wf rleq_wf rless-int rdiv_wf rmul_preserves_rleq rabs_wf int-to-real_wf rmul_wf r-archimedean int_upper_wf all_wf int_upper_properties decidable__lt intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma rneq_wf squash_wf true_wf rabs-int iff_weakening_equal absval_pos le_wf rinv_wf2 absval_wf rneq_functionality rabs-of-nonneg rabs-rdiv rless_functionality req_transitivity real_term_polynomial itermSubtract_wf itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul-rinv3 uiff_transitivity2 rinv-mul-as-rdiv absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis equalitySymmetry equalityTransitivity computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality unionElimination rename setElimination addEquality baseClosed imageMemberEquality independent_pairFormation independent_functionElimination inrFormation sqequalRule independent_isectElimination because_Cache dependent_pairFormation productElimination hypothesisEquality natural_numberEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution applyEquality imageElimination universeEquality dependent_set_memberEquality minusEquality equalityElimination lessCases isect_memberFormation sqequalAxiom promote_hyp instantiate cumulativity

Latex:
\mforall{}x:\mBbbR{}.  \mexists{}N:\mBbbN{}.  \mforall{}n:\{N...\}.  (|(x/r(n  +  1))|  \mleq{}  (r1/r(2)))



Date html generated: 2017_10_03-AM-09_23_03
Last ObjectModification: 2017_07_28-AM-07_46_12

Theory : reals


Home Index