Nuprl Lemma : r-archimedean2
∀x:ℝ. ∃N:ℕ. ∀n:{N...}. (|(x/r(n + 1))| ≤ (r1/r(2)))
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rleq: x ≤ y, 
rabs: |x|, 
int-to-real: r(n), 
real: ℝ, 
int_upper: {i...}, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
rge: x ≥ y, 
top: Top, 
not: ¬A, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
decidable: Dec(P), 
ge: i ≥ j , 
nat: ℕ, 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
true: True, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
prop: ℙ, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
guard: {T}, 
rneq: x ≠ y, 
uimplies: b supposing a, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
int_upper: {i...}, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
rdiv: (x/y), 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b
Lemmas referenced : 
real_wf, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rmul_comm, 
rmul-rdiv-cancel2, 
req_weakening, 
rleq_functionality, 
uiff_transitivity, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
rleq-int, 
rless_wf, 
rleq_wf, 
rless-int, 
rdiv_wf, 
rmul_preserves_rleq, 
rabs_wf, 
int-to-real_wf, 
rmul_wf, 
r-archimedean, 
int_upper_wf, 
all_wf, 
int_upper_properties, 
decidable__lt, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
rneq_wf, 
squash_wf, 
true_wf, 
rabs-int, 
iff_weakening_equal, 
absval_pos, 
le_wf, 
rinv_wf2, 
absval_wf, 
rneq_functionality, 
rabs-of-nonneg, 
rabs-rdiv, 
rless_functionality, 
req_transitivity, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul-rinv3, 
uiff_transitivity2, 
rinv-mul-as-rdiv, 
absval_unfold, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
equalitySymmetry, 
equalityTransitivity, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
unionElimination, 
rename, 
setElimination, 
addEquality, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
independent_functionElimination, 
inrFormation, 
sqequalRule, 
independent_isectElimination, 
because_Cache, 
dependent_pairFormation, 
productElimination, 
hypothesisEquality, 
natural_numberEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
applyEquality, 
imageElimination, 
universeEquality, 
dependent_set_memberEquality, 
minusEquality, 
equalityElimination, 
lessCases, 
isect_memberFormation, 
sqequalAxiom, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}x:\mBbbR{}.  \mexists{}N:\mBbbN{}.  \mforall{}n:\{N...\}.  (|(x/r(n  +  1))|  \mleq{}  (r1/r(2)))
Date html generated:
2017_10_03-AM-09_23_03
Last ObjectModification:
2017_07_28-AM-07_46_12
Theory : reals
Home
Index