Nuprl Lemma : exp-exists

x:ℝ. ∃a:ℝ. Σn.(x^n)/(n)! a


Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a rnexp: x^k1 int-rdiv: (a)/k1 real: fact: (n)! all: x:A. B[x] exists: x:A. B[x]
Definitions unfolded in proof :  iff: ⇐⇒ Q top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  nat: guard: {T} false: False not: ¬A nequal: a ≠ b ∈  implies:  Q int_nzero: -o subtype_rel: A ⊆B series-converges: Σn.x[n]↓ and: P ∧ Q true: True less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + exists: x:A. B[x] real: uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] prop: uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  iff_weakening_equal subtype_rel_self int_nzero_wf true_wf squash_wf nat_wf rnexp_wf int_subtype_base equal-wf-base int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat nat_properties nat_plus_properties nequal_wf subtype_rel_sets fact_wf int-rdiv_wf series-sum_wf real_wf value-type_wf int-value-type less_than_wf function-value-type regular-int-seq_wf nat_plus_wf set-value-type equal_wf exp-series-converges
Rules used in proof :  universeEquality instantiate imageElimination voidEquality voidElimination isect_memberEquality int_eqEquality independent_functionElimination approximateComputation applyLambdaEquality setEquality applyEquality productElimination dependent_functionElimination rename setElimination baseClosed imageMemberEquality independent_pairFormation dependent_pairFormation natural_numberEquality intEquality functionEquality independent_isectElimination lambdaEquality sqequalRule equalitySymmetry hypothesis equalityTransitivity thin isectElimination sqequalHypSubstitution dependent_set_memberEquality cutEval hypothesisEquality because_Cache lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}x:\mBbbR{}.  \mexists{}a:\mBbbR{}.  \mSigma{}n.(x\^{}n)/(n)!  =  a



Date html generated: 2018_05_22-PM-02_03_58
Last ObjectModification: 2018_05_21-AM-00_16_30

Theory : reals


Home Index