Nuprl Lemma : exp-exists
∀x:ℝ. ∃a:ℝ. Σn.(x^n)/(n)! = a
Proof
Definitions occuring in Statement : 
series-sum: Σn.x[n] = a
, 
rnexp: x^k1
, 
int-rdiv: (a)/k1
, 
real: ℝ
, 
fact: (n)!
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
Definitions unfolded in proof : 
iff: P 
⇐⇒ Q
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
guard: {T}
, 
false: False
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
implies: P 
⇒ Q
, 
int_nzero: ℤ-o
, 
subtype_rel: A ⊆r B
, 
series-converges: Σn.x[n]↓
, 
and: P ∧ Q
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
, 
real: ℝ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
iff_weakening_equal, 
subtype_rel_self, 
int_nzero_wf, 
true_wf, 
squash_wf, 
nat_wf, 
rnexp_wf, 
int_subtype_base, 
equal-wf-base, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
nat_plus_properties, 
nequal_wf, 
subtype_rel_sets, 
fact_wf, 
int-rdiv_wf, 
series-sum_wf, 
real_wf, 
value-type_wf, 
int-value-type, 
less_than_wf, 
function-value-type, 
regular-int-seq_wf, 
nat_plus_wf, 
set-value-type, 
equal_wf, 
exp-series-converges
Rules used in proof : 
universeEquality, 
instantiate, 
imageElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
int_eqEquality, 
independent_functionElimination, 
approximateComputation, 
applyLambdaEquality, 
setEquality, 
applyEquality, 
productElimination, 
dependent_functionElimination, 
rename, 
setElimination, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
dependent_pairFormation, 
natural_numberEquality, 
intEquality, 
functionEquality, 
independent_isectElimination, 
lambdaEquality, 
sqequalRule, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
dependent_set_memberEquality, 
cutEval, 
hypothesisEquality, 
because_Cache, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}x:\mBbbR{}.  \mexists{}a:\mBbbR{}.  \mSigma{}n.(x\^{}n)/(n)!  =  a
Date html generated:
2018_05_22-PM-02_03_58
Last ObjectModification:
2018_05_21-AM-00_16_30
Theory : reals
Home
Index