Nuprl Lemma : ratio-test-ext

x:ℕ ⟶ ℝ. ∀N:ℕ.
  ((∀c:{c:ℝ(r0 ≤ c) ∧ (c < r1)} ((∀n:{N...}. (|x[n 1]| ≤ (c |x[n]|)))  Σn.x[n]↓))
  ∧ (∀c:{c:ℝr1 < c} ((∀n:{N...}. ((c |x[n]|) < |x[n 1]|))  Σn.x[n]↑)))


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ series-converges: Σn.x[n]↓ rleq: x ≤ y rless: x < y rabs: |x| rmul: b int-to-real: r(n) real: int_upper: {i...} nat: so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T so_apply: x[s] rabs: |x| subtract: m ratio-test comparison-test-ext series-converges-tail2-ext series-converges-rmul-ext geometric-series-converges-ext series-diverges-trivially rless_transitivity2 rless_functionality decidable__le any: any x rleq_functionality_wrt_implies rless-iff4 rless-iff-large-diff rleq_functionality regular-less-iff decidable__and decidable__not decidable__less_than' decidable__implies decidable__false uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top uimplies: supposing a
Lemmas referenced :  ratio-test lifting-strict-decide istype-void strict4-decide lifting-strict-less comparison-test-ext series-converges-tail2-ext series-converges-rmul-ext geometric-series-converges-ext series-diverges-trivially rless_transitivity2 rless_functionality decidable__le rleq_functionality_wrt_implies rless-iff4 rless-iff-large-diff rleq_functionality regular-less-iff decidable__and decidable__not decidable__less_than' decidable__implies decidable__false
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}N:\mBbbN{}.
    ((\mforall{}c:\{c:\mBbbR{}|  (r0  \mleq{}  c)  \mwedge{}  (c  <  r1)\}  .  ((\mforall{}n:\{N...\}.  (|x[n  +  1]|  \mleq{}  (c  *  |x[n]|)))  {}\mRightarrow{}  \mSigma{}n.x[n]\mdownarrow{}))
    \mwedge{}  (\mforall{}c:\{c:\mBbbR{}|  r1  <  c\}  .  ((\mforall{}n:\{N...\}.  ((c  *  |x[n]|)  <  |x[n  +  1]|))  {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})))



Date html generated: 2019_10_29-AM-10_26_40
Last ObjectModification: 2019_04_02-AM-10_05_04

Theory : reals


Home Index