Nuprl Lemma : series-diverges-trivially
∀z:ℝ. ((r0 < z) 
⇒ (∀x:ℕ ⟶ ℝ. ((∀k:ℕ. ∃n:ℕ. ((k ≤ n) ∧ (z ≤ |x[n]|))) 
⇒ Σn.x[n]↑)))
Proof
Definitions occuring in Statement : 
series-diverges: Σn.x[n]↑
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
req_int_terms: t1 ≡ t2
, 
rev_uimplies: rev_uimplies(P;Q)
, 
subtype_rel: A ⊆r B
, 
int_upper: {i...}
, 
less_than': less_than'(a;b)
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
diverges: n.x[n]↑
, 
series-diverges: Σn.x[n]↑
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
rsum_unroll, 
rsub_functionality, 
rabs_functionality, 
req_weakening, 
rleq_functionality, 
req-iff-rsub-is-0, 
int_formula_prop_less_lemma, 
intformless_wf, 
int_seg_subtype_nat, 
radd_wf, 
zero-add, 
nequal-le-implies, 
false_wf, 
upper_subtype_nat, 
neg_assert_of_eq_int, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
assert_of_eq_int, 
eq_int_wf, 
less_than_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
real_wf, 
all_wf, 
int-to-real_wf, 
rless_wf, 
nat_wf, 
exists_wf, 
int_seg_wf, 
rsum_wf, 
rsub_wf, 
rabs_wf, 
rleq_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_plus_properties, 
sq_stable__less_than, 
nat_properties
Rules used in proof : 
hypothesis_subsumption, 
functionExtensionality, 
cumulativity, 
instantiate, 
promote_hyp, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
functionEquality, 
applyEquality, 
productEquality, 
productElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
independent_functionElimination, 
because_Cache, 
isectElimination, 
extract_by_obid, 
introduction, 
natural_numberEquality, 
rename, 
setElimination, 
addEquality, 
dependent_set_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
hypothesis, 
cut, 
hypothesisEquality, 
dependent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}z:\mBbbR{}.  ((r0  <  z)  {}\mRightarrow{}  (\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  ((\mforall{}k:\mBbbN{}.  \mexists{}n:\mBbbN{}.  ((k  \mleq{}  n)  \mwedge{}  (z  \mleq{}  |x[n]|)))  {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})))
Date html generated:
2018_05_22-PM-02_02_41
Last ObjectModification:
2018_05_21-AM-00_16_18
Theory : reals
Home
Index