Nuprl Lemma : series-diverges-trivially

z:ℝ((r0 < z)  (∀x:ℕ ⟶ ℝ((∀k:ℕ. ∃n:ℕ((k ≤ n) ∧ (z ≤ |x[n]|)))  Σn.x[n]↑)))


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ rleq: x ≤ y rless: x < y rabs: |x| int-to-real: r(n) real: nat: so_apply: x[s] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B int_upper: {i...} less_than': less_than'(a;b) assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] so_lambda: λ2x.t[x] prop: top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  nat_plus: + squash: T sq_stable: SqStable(P) sq_exists: x:A [B[x]] rless: x < y uall: [x:A]. B[x] nat: cand: c∧ B and: P ∧ Q member: t ∈ T exists: x:A. B[x] diverges: n.x[n]↑ series-diverges: Σn.x[n]↑ implies:  Q all: x:A. B[x]
Lemmas referenced :  real_term_value_const_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_sub_lemma real_polynomial_null rsum_unroll rsub_functionality rabs_functionality req_weakening rleq_functionality req-iff-rsub-is-0 int_formula_prop_less_lemma intformless_wf int_seg_subtype_nat radd_wf zero-add nequal-le-implies false_wf upper_subtype_nat neg_assert_of_eq_int int_formula_prop_eq_lemma intformeq_wf assert_of_eq_int eq_int_wf less_than_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf real_wf all_wf int-to-real_wf rless_wf nat_wf exists_wf int_seg_wf rsum_wf rsub_wf rabs_wf rleq_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties sq_stable__less_than nat_properties
Rules used in proof :  hypothesis_subsumption functionExtensionality cumulativity instantiate promote_hyp equalitySymmetry equalityTransitivity equalityElimination functionEquality applyEquality productEquality productElimination voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality approximateComputation independent_isectElimination unionElimination imageElimination baseClosed imageMemberEquality sqequalRule independent_functionElimination because_Cache isectElimination extract_by_obid introduction natural_numberEquality rename setElimination addEquality dependent_set_memberEquality thin dependent_functionElimination sqequalHypSubstitution independent_pairFormation hypothesis cut hypothesisEquality dependent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}z:\mBbbR{}.  ((r0  <  z)  {}\mRightarrow{}  (\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  ((\mforall{}k:\mBbbN{}.  \mexists{}n:\mBbbN{}.  ((k  \mleq{}  n)  \mwedge{}  (z  \mleq{}  |x[n]|)))  {}\mRightarrow{}  \mSigma{}n.x[n]\muparrow{})))



Date html generated: 2018_05_22-PM-02_02_41
Last ObjectModification: 2018_05_21-AM-00_16_18

Theory : reals


Home Index