Nuprl Lemma : rsin-arcsin
∀[a:{a:ℝ| a ∈ [r(-1), r1]} ]. (rsin(arcsin(a)) = a)
Proof
Definitions occuring in Statement : 
arcsin: arcsin(a), 
rsin: rsin(x), 
rccint: [l, u], 
i-member: r ∈ I, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
and: P ∧ Q, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
arcsin_wf, 
sq_stable__req, 
rsin_wf, 
real_wf, 
i-member_wf, 
rccint_wf, 
int-to-real_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_functionElimination, 
setIsType, 
universeIsType, 
minusEquality, 
natural_numberEquality
Latex:
\mforall{}[a:\{a:\mBbbR{}|  a  \mmember{}  [r(-1),  r1]\}  ].  (rsin(arcsin(a))  =  a)
Date html generated:
2019_10_31-AM-06_14_26
Last ObjectModification:
2019_05_21-PM-11_19_57
Theory : reals_2
Home
Index