Nuprl Lemma : cat-isomorphic-equiv

C:SmallCategory. EquivRel(cat-ob(C);x,y.cat-isomorphic(C;x;y))


Proof




Definitions occuring in Statement :  cat-isomorphic: cat-isomorphic(C;x;y) cat-ob: cat-ob(C) small-category: SmallCategory equiv_rel: EquivRel(T;x,y.E[x; y]) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a sym: Sym(T;x,y.E[x; y]) implies:  Q prop: trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  cat-ob_wf small-category_wf cat-isomorphic_weakening cat-isomorphic_inversion cat-isomorphic_wf cat-isomorphic_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination because_Cache independent_isectElimination independent_functionElimination

Latex:
\mforall{}C:SmallCategory.  EquivRel(cat-ob(C);x,y.cat-isomorphic(C;x;y))



Date html generated: 2017_01_09-AM-09_11_36
Last ObjectModification: 2017_01_08-PM-01_41_45

Theory : small!categories


Home Index