Nuprl Lemma : cat-isomorphic-equiv
∀C:SmallCategory. EquivRel(cat-ob(C);x,y.cat-isomorphic(C;x;y))
Proof
Definitions occuring in Statement : 
cat-isomorphic: cat-isomorphic(C;x;y)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
cat-ob_wf, 
small-category_wf, 
cat-isomorphic_weakening, 
cat-isomorphic_inversion, 
cat-isomorphic_wf, 
cat-isomorphic_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}C:SmallCategory.  EquivRel(cat-ob(C);x,y.cat-isomorphic(C;x;y))
Date html generated:
2017_01_09-AM-09_11_36
Last ObjectModification:
2017_01_08-PM-01_41_45
Theory : small!categories
Home
Index