Nuprl Lemma : cat-isomorphic_weakening

C:SmallCategory. ∀x,y:cat-ob(C).  cat-isomorphic(C;x;y) supposing y ∈ cat-ob(C)


Proof




Definitions occuring in Statement :  cat-isomorphic: cat-isomorphic(C;x;y) cat-ob: cat-ob(C) small-category: SmallCategory uimplies: supposing a all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} true: True prop: squash: T subtype_rel: A ⊆B uall: [x:A]. B[x] exists: x:A. B[x] cat-isomorphic: cat-isomorphic(C;x;y) member: t ∈ T uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  small-category_wf cat-ob_wf equal_wf cat-id-isomorphism iff_weakening_equal true_wf squash_wf cat-isomorphism_wf subtype_rel_wf cat-arrow_wf subtype_rel_self cat-id_wf
Rules used in proof :  dependent_functionElimination independent_functionElimination productElimination independent_isectElimination universeEquality baseClosed imageMemberEquality natural_numberEquality because_Cache equalityTransitivity imageElimination lambdaEquality sqequalRule applyLambdaEquality equalitySymmetry hyp_replacement hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid applyEquality dependent_pairFormation rename thin hypothesis axiomEquality introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}C:SmallCategory.  \mforall{}x,y:cat-ob(C).    cat-isomorphic(C;x;y)  supposing  x  =  y



Date html generated: 2017_01_11-AM-09_17_44
Last ObjectModification: 2017_01_10-PM-06_12_06

Theory : small!categories


Home Index