Nuprl Lemma : cat-isomorphic_weakening
∀C:SmallCategory. ∀x,y:cat-ob(C).  cat-isomorphic(C;x;y) supposing x = y ∈ cat-ob(C)
Proof
Definitions occuring in Statement : 
cat-isomorphic: cat-isomorphic(C;x;y), 
cat-ob: cat-ob(C), 
small-category: SmallCategory, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
true: True, 
prop: ℙ, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
cat-isomorphic: cat-isomorphic(C;x;y), 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Lemmas referenced : 
small-category_wf, 
cat-ob_wf, 
equal_wf, 
cat-id-isomorphism, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
cat-isomorphism_wf, 
subtype_rel_wf, 
cat-arrow_wf, 
subtype_rel_self, 
cat-id_wf
Rules used in proof : 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
universeEquality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
because_Cache, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
sqequalRule, 
applyLambdaEquality, 
equalitySymmetry, 
hyp_replacement, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
applyEquality, 
dependent_pairFormation, 
rename, 
thin, 
hypothesis, 
axiomEquality, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}C:SmallCategory.  \mforall{}x,y:cat-ob(C).    cat-isomorphic(C;x;y)  supposing  x  =  y
Date html generated:
2017_01_11-AM-09_17_44
Last ObjectModification:
2017_01_10-PM-06_12_06
Theory : small!categories
Home
Index