Nuprl Lemma : cat-isomorphic_weakening
∀C:SmallCategory. ∀x,y:cat-ob(C). cat-isomorphic(C;x;y) supposing x = y ∈ cat-ob(C)
Proof
Definitions occuring in Statement :
cat-isomorphic: cat-isomorphic(C;x;y)
,
cat-ob: cat-ob(C)
,
small-category: SmallCategory
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
implies: P
⇒ Q
,
rev_implies: P
⇐ Q
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
guard: {T}
,
true: True
,
prop: ℙ
,
squash: ↓T
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
exists: ∃x:A. B[x]
,
cat-isomorphic: cat-isomorphic(C;x;y)
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
Lemmas referenced :
small-category_wf,
cat-ob_wf,
equal_wf,
cat-id-isomorphism,
iff_weakening_equal,
true_wf,
squash_wf,
cat-isomorphism_wf,
subtype_rel_wf,
cat-arrow_wf,
subtype_rel_self,
cat-id_wf
Rules used in proof :
dependent_functionElimination,
independent_functionElimination,
productElimination,
independent_isectElimination,
universeEquality,
baseClosed,
imageMemberEquality,
natural_numberEquality,
because_Cache,
equalityTransitivity,
imageElimination,
lambdaEquality,
sqequalRule,
applyLambdaEquality,
equalitySymmetry,
hyp_replacement,
hypothesisEquality,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
applyEquality,
dependent_pairFormation,
rename,
thin,
hypothesis,
axiomEquality,
introduction,
cut,
isect_memberFormation,
lambdaFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}C:SmallCategory. \mforall{}x,y:cat-ob(C). cat-isomorphic(C;x;y) supposing x = y
Date html generated:
2017_01_11-AM-09_17_44
Last ObjectModification:
2017_01_10-PM-06_12_06
Theory : small!categories
Home
Index