Nuprl Lemma : cat-monic_wf
∀[C:SmallCategory]. ∀[y,z:cat-ob(C)]. ∀[f:cat-arrow(C) y z]. (monic(f) ∈ ℙ)
Proof
Definitions occuring in Statement :
cat-monic: monic(f)
,
cat-arrow: cat-arrow(C)
,
cat-ob: cat-ob(C)
,
small-category: SmallCategory
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
apply: f a
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cat-monic: monic(f)
,
so_lambda: λ2x.t[x]
,
uimplies: b supposing a
,
prop: ℙ
,
so_apply: x[s]
Lemmas referenced :
uall_wf,
cat-ob_wf,
cat-arrow_wf,
isect_wf,
equal_wf,
cat-comp_wf,
small-category_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaEquality,
applyEquality,
because_Cache,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality
Latex:
\mforall{}[C:SmallCategory]. \mforall{}[y,z:cat-ob(C)]. \mforall{}[f:cat-arrow(C) y z]. (monic(f) \mmember{} \mBbbP{})
Date html generated:
2017_10_05-AM-00_45_47
Last ObjectModification:
2017_07_28-AM-09_19_06
Theory : small!categories
Home
Index