Nuprl Lemma : functor_arrow_wf

[C,D:SmallCategory]. ∀[F:Functor(C;D)]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) y].
  (F(f) ∈ cat-arrow(D) (ob(F) x) (ob(F) y))


Proof




Definitions occuring in Statement :  functor_arrow: F(f) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T apply: a
Definitions unfolded in proof :  functor_arrow: F(f) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf cat-functor_wf cat-ob_wf cat-arrow_wf functor-arrow_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid applyEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].
    (F(f)  \mmember{}  cat-arrow(D)  (ob(F)  x)  (ob(F)  y))



Date html generated: 2017_01_19-PM-02_52_25
Last ObjectModification: 2017_01_17-PM-00_44_46

Theory : small!categories


Home Index