Nuprl Lemma : functor_arrow_wf
∀[C,D:SmallCategory]. ∀[F:Functor(C;D)]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) x y].
  (F(f) ∈ cat-arrow(D) (ob(F) x) (ob(F) y))
Proof
Definitions occuring in Statement : 
functor_arrow: F(f)
, 
functor-ob: ob(F)
, 
cat-functor: Functor(C1;C2)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
functor_arrow: F(f)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf, 
cat-functor_wf, 
cat-ob_wf, 
cat-arrow_wf, 
functor-arrow_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
applyEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].
    (F(f)  \mmember{}  cat-arrow(D)  (ob(F)  x)  (ob(F)  y))
Date html generated:
2017_01_19-PM-02_52_25
Last ObjectModification:
2017_01_17-PM-00_44_46
Theory : small!categories
Home
Index