Nuprl Lemma : groupoid-inv_wf

[G:Groupoid]. ∀[x,y:cat-ob(cat(G))]. ∀[x_y:cat-arrow(cat(G)) y].  (groupoid-inv(G;x;y;x_y) ∈ cat-arrow(cat(G)) x)


Proof




Definitions occuring in Statement :  groupoid-inv: groupoid-inv(G;x;y;x_y) groupoid-cat: cat(G) groupoid: Groupoid cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) uall: [x:A]. B[x] member: t ∈ T apply: a
Definitions unfolded in proof :  pi2: snd(t) pi1: fst(t) groupoid-cat: cat(G) groupoid: Groupoid groupoid-inv: groupoid-inv(G;x;y;x_y) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  groupoid_wf cat-ob_wf groupoid-cat_wf cat-arrow_wf
Rules used in proof :  because_Cache isect_memberEquality isectElimination lemma_by_obid equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality rename setElimination applyEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[G:Groupoid].  \mforall{}[x,y:cat-ob(cat(G))].  \mforall{}[x$_{y}$:cat-arrow(cat(G))  x  y].
    (groupoid-inv(G;x;y;x$_{y}$)  \mmember{}  cat-arrow(cat(G))  y  x)



Date html generated: 2016_05_18-AM-11_54_25
Last ObjectModification: 2015_12_28-PM-02_22_52

Theory : small!categories


Home Index