Nuprl Lemma : mk-groupoid_wf

[C:SmallCategory]. ∀[inv:x:cat-ob(C) ⟶ y:cat-ob(C) ⟶ (cat-arrow(C) y) ⟶ (cat-arrow(C) x)].
  Groupoid(C;
           inv(x,y,f) inv[x;y;f]) ∈ Groupoid 
  supposing ∀x,y:cat-ob(C). ∀f:cat-arrow(C) y.
              (((cat-comp(C) inv[x;y;f]) (cat-id(C) x) ∈ (cat-arrow(C) x))
              ∧ ((cat-comp(C) inv[x;y;f] f) (cat-id(C) y) ∈ (cat-arrow(C) y)))


Proof




Definitions occuring in Statement :  mk-groupoid: mk-groupoid groupoid: Groupoid cat-comp: cat-comp(C) cat-id: cat-id(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2;s3] all: x:A. B[x] and: P ∧ Q member: t ∈ T apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a mk-groupoid: mk-groupoid groupoid: Groupoid so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  cat-ob_wf cat-arrow_wf all_wf equal_wf cat-comp_wf cat-id_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_pairEquality hypothesisEquality dependent_set_memberEquality lambdaEquality applyEquality functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache productEquality setEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[inv:x:cat-ob(C)  {}\mrightarrow{}  y:cat-ob(C)  {}\mrightarrow{}  (cat-arrow(C)  x  y)  {}\mrightarrow{}  (cat-arrow(C)  y  x)].
    Groupoid(C;
                      inv(x,y,f)  =  inv[x;y;f])  \mmember{}  Groupoid 
    supposing  \mforall{}x,y:cat-ob(C).  \mforall{}f:cat-arrow(C)  x  y.
                            (((cat-comp(C)  x  y  x  f  inv[x;y;f])  =  (cat-id(C)  x))
                            \mwedge{}  ((cat-comp(C)  y  x  y  inv[x;y;f]  f)  =  (cat-id(C)  y)))



Date html generated: 2017_10_05-AM-00_49_06
Last ObjectModification: 2017_07_28-AM-09_20_10

Theory : small!categories


Home Index