Nuprl Lemma : monad-extend_wf
∀[C:SmallCategory]. ∀[M:Monad(C)]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) x M(y)].
  (monad-extend(C;M;x;y;f) ∈ cat-arrow(C) M(x) M(y))
Proof
Definitions occuring in Statement : 
monad-extend: monad-extend(C;M;x;y;f)
, 
monad-fun: M(x)
, 
cat-monad: Monad(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
mk-functor: mk-functor, 
functor-comp: functor-comp(F;G)
, 
functor-ob: ob(F)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
nat-trans: nat-trans(C;D;F;G)
, 
and: P ∧ Q
, 
pi2: snd(t)
, 
monad-op: monad-op(M;x)
, 
monad-extend: monad-extend(C;M;x;y;f)
, 
pi1: fst(t)
, 
monad-functor: monad-functor(M)
, 
monad-fun: M(x)
, 
spreadn: spread3, 
cat-monad: Monad(C)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
small-category_wf, 
cat-monad_wf, 
cat-ob_wf, 
monad-fun_wf, 
functor-comp_wf, 
cat-arrow_wf, 
subtype_rel-equal, 
functor-arrow_wf, 
functor-ob_wf, 
cat-comp_wf
Rules used in proof : 
independent_isectElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
applyEquality, 
sqequalRule, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  M(y)].
    (monad-extend(C;M;x;y;f)  \mmember{}  cat-arrow(C)  M(x)  M(y))
Date html generated:
2017_01_19-PM-02_58_34
Last ObjectModification:
2017_01_17-PM-03_49_38
Theory : small!categories
Home
Index