Nuprl Lemma : monad-extend_wf

[C:SmallCategory]. ∀[M:Monad(C)]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) M(y)].
  (monad-extend(C;M;x;y;f) ∈ cat-arrow(C) M(x) M(y))


Proof




Definitions occuring in Statement :  monad-extend: monad-extend(C;M;x;y;f) monad-fun: M(x) cat-monad: Monad(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T apply: a
Definitions unfolded in proof :  mk-functor: mk-functor functor-comp: functor-comp(F;G) functor-ob: ob(F) uimplies: supposing a subtype_rel: A ⊆B nat-trans: nat-trans(C;D;F;G) and: P ∧ Q pi2: snd(t) monad-op: monad-op(M;x) monad-extend: monad-extend(C;M;x;y;f) pi1: fst(t) monad-functor: monad-functor(M) monad-fun: M(x) spreadn: spread3 cat-monad: Monad(C) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf cat-monad_wf cat-ob_wf monad-fun_wf functor-comp_wf cat-arrow_wf subtype_rel-equal functor-arrow_wf functor-ob_wf cat-comp_wf
Rules used in proof :  independent_isectElimination because_Cache hypothesis hypothesisEquality isectElimination extract_by_obid introduction applyEquality sqequalRule productElimination rename thin setElimination sqequalHypSubstitution cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  M(y)].
    (monad-extend(C;M;x;y;f)  \mmember{}  cat-arrow(C)  M(x)  M(y))



Date html generated: 2017_01_19-PM-02_58_34
Last ObjectModification: 2017_01_17-PM-03_49_38

Theory : small!categories


Home Index