Nuprl Lemma : tree-groupoid_wf

[X:Type]. (tree-groupoid(X) ∈ Groupoid)


Proof




Definitions occuring in Statement :  tree-groupoid: tree-groupoid(X) groupoid: Groupoid uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tree-groupoid: tree-groupoid(X) so_lambda: so_lambda(x,y,z.t[x; y; z]) subtype_rel: A ⊆B so_apply: x[s1;s2;s3] uimplies: supposing a all: x:A. B[x] and: P ∧ Q cand: c∧ B cat-comp: cat-comp(C) pi2: snd(t) tree-cat: tree-cat(X) mk-cat: mk-cat it: cat-id: cat-id(C) pi1: fst(t)
Lemmas referenced :  mk-groupoid_wf tree-cat_wf it_wf cat-arrow_wf cat-ob_wf cat-id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality applyEquality because_Cache independent_isectElimination lambdaFormation independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[X:Type].  (tree-groupoid(X)  \mmember{}  Groupoid)



Date html generated: 2017_01_19-PM-02_55_56
Last ObjectModification: 2017_01_13-AM-11_46_38

Theory : small!categories


Home Index