Nuprl Lemma : in-open_wf

[X:Type]. ∀[x:X]. ∀[A:Open(X)].  (x ∈ A ∈ ℙ)


Proof




Definitions occuring in Statement :  in-open: x ∈ A Open: Open(X) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  Open: Open(X) uall: [x:A]. B[x] member: t ∈ T in-open: x ∈ A subtype_rel: A ⊆B
Lemmas referenced :  equal_wf Sierpinski_wf Sierpinski-top_wf subtype-Sierpinski
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[x:X].  \mforall{}[A:Open(X)].    (x  \mmember{}  A  \mmember{}  \mBbbP{})



Date html generated: 2019_10_31-AM-07_18_57
Last ObjectModification: 2015_12_28-AM-11_20_52

Theory : synthetic!topology


Home Index