Nuprl Lemma : subtype-Sierpinski

(ℕ ⟶ 𝔹) ⊆Sierpinski


Proof




Definitions occuring in Statement :  Sierpinski: Sierpinski nat: bool: 𝔹 subtype_rel: A ⊆B function: x:A ⟶ B[x]
Definitions unfolded in proof :  Sierpinski: Sierpinski uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  subtype_quotient nat_wf bool_wf iff_wf equal_wf Sierpinski-bottom_wf two-class-equiv-rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis sqequalRule lambdaEquality hypothesisEquality independent_isectElimination

Latex:
(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  \msubseteq{}r  Sierpinski



Date html generated: 2019_10_31-AM-06_35_27
Last ObjectModification: 2015_12_28-AM-11_21_31

Theory : synthetic!topology


Home Index