Nuprl Lemma : subtype-Sierpinski
(ℕ ⟶ 𝔹) ⊆r Sierpinski
Proof
Definitions occuring in Statement : 
Sierpinski: Sierpinski
, 
nat: ℕ
, 
bool: 𝔹
, 
subtype_rel: A ⊆r B
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
Sierpinski: Sierpinski
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
subtype_quotient, 
nat_wf, 
bool_wf, 
iff_wf, 
equal_wf, 
Sierpinski-bottom_wf, 
two-class-equiv-rel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
independent_isectElimination
Latex:
(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  \msubseteq{}r  Sierpinski
Date html generated:
2019_10_31-AM-06_35_27
Last ObjectModification:
2015_12_28-AM-11_21_31
Theory : synthetic!topology
Home
Index