Nuprl Lemma : sp-le-bottom

[x:Sierpinski]. ⊥ ≤ x


Proof




Definitions occuring in Statement :  sp-le: x ≤ y Sierpinski: Sierpinski Sierpinski-bottom: uall: [x:A]. B[x]
Definitions unfolded in proof :  sp-le: x ≤ y uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A false: False prop:
Lemmas referenced :  Sierpinski-unequal equal-wf-base Sierpinski_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution independent_functionElimination thin hypothesis voidElimination isectElimination baseClosed lambdaEquality dependent_functionElimination hypothesisEquality axiomEquality because_Cache

Latex:
\mforall{}[x:Sierpinski].  \mbot{}  \mleq{}  x



Date html generated: 2019_10_31-AM-06_36_09
Last ObjectModification: 2017_07_28-AM-09_12_05

Theory : synthetic!topology


Home Index