Nuprl Lemma : sp-le-bottom
∀[x:Sierpinski]. ⊥ ≤ x
Proof
Definitions occuring in Statement : 
sp-le: x ≤ y
, 
Sierpinski: Sierpinski
, 
Sierpinski-bottom: ⊥
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
sp-le: x ≤ y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
Sierpinski-unequal, 
equal-wf-base, 
Sierpinski_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
independent_functionElimination, 
thin, 
hypothesis, 
voidElimination, 
isectElimination, 
baseClosed, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[x:Sierpinski].  \mbot{}  \mleq{}  x
Date html generated:
2019_10_31-AM-06_36_09
Last ObjectModification:
2017_07_28-AM-09_12_05
Theory : synthetic!topology
Home
Index